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SUMMARY 

The paper presents a two-dimensional model for the investigation of pressure transients in pipelines. The 
governing equations have been established and a method of solving the equations using the centre implicit 
method is presented. The theoretically predicted values are compared with the experimentally determined 
pressure transients for horizontal pipelines with a valve at the end. The two-dimensional model gives results 
which are accurate than those of the one-dimensional model and are in good agreement with the experimental 
results. 
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INTRODUCTION 

In the study of pressure transients in pipelines, the one-dimensional model is usually used. The 
velocity and pressure are assumed to be uniform across the pipe sections and the analysis leads to 
results which are in agreement with the experimental results at high Reynolds number; however, at 
low Reynolds number, i.e., Re < 2000, it has been found that there is a large discrepancy between 
the experimental and theoretical results.’ To eliminate this discrepancy for an abrupt transient, 
such as a sudden valve closure, Zielke’ used the concept of a heuristic weighting function to 
evaluate the wall shear. The instantaneous wall shear stress is determined as the sum of the steady 
state value and a term in which certain weights are given to the past velocity changes at the pipe 
cross-section. This correction is applied to the one-dimensional water hammer equations and 
solved using the method of characteristics. 

Another approach has been presented by Ohmi et al.’ where the pressure variation of a slightly 
compressible fluid in a pipeline is numerically computed using the method of characteristics and a 
finite difference technique, in which the wall shear is evaluated from the cross-sectional profile of 
instantaneous axial velocities. They have shown that the distribution of total viscosity in a 
pulsating pipe flow can be modelled best by a four-region model. Accurate solution of the pressure 
transients depends on the correct modelling of the total viscosity. In the case of axisymmetric pipe 
flow the variation of the velocity profile and hence the wall shear stress affects the pressure 
transients. Therefore, to further improve the accuracy of prediction of pressure transients for 
laminar flow at low Reynolds number, it is necessary to extend the presently used one-dimensional 
model4 to a two-dimensional approach. 

This paper presents a two-dimensional model to predict the pressure transients in a pipeline 
assuming axisymmetric flow. The governing equations are solved by a finite difference technique 
which includes an artificial viscosity term (a damping factor) presented by the authors4 and a 
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modified viscosity model presented by Ohmi and Usui5 to account for pipe friction. The theoretical 
results obtained with the above two-dimensional centre implicit method (CIM) model are 
compared with the experimental results obtained by other investigators for the case: of sudden 
closure of a valve at the end of a pipeline. The advantages of the CIM model over the method of 
characteristics have been discussed previo~sly.~ 

THEORETICAL MODEL 

To investigate the pressure transient in a pipeline, where the flow is two-dimensional, a simple 
pipeline system is considered in which a pressure wave is generated by sudden closure of a valve at 
the end of the pipeline. The pipeline is of uniform and circular cross-section and connected to a 
constant head reservoir maintained at a predetermined value. It is assumed that the fluid flow is 
homogeneous and axisymmetrical. The other assumptions are: 

(1) The axial velocity component u and the density p are functions of the axial x amd radial r 

(2) The radial velocity component II is very small compared with the axial component u. 
(3) The pressure p in a cylindrical element at any cross-section along the pipeline corresponds 

to the pressure at the axis of symmetry; therefore it is assumed that the aplar term is 
negligible and hence p = p ( x ,  t). 

distances and time t only. 

Continuity equation 

The continuity equation in cylindrical co-ordinates (Figure 1) for axisymmetric flow at radius r is 

au au u ap a p  a p  
( a x  ar r )  ax ar at p -+-+- + u - + ~ - + - = o .  

Taking the time derivative of the density and pressure functions, and using the relationship 
between density, pressure and wave speed c for compressible flow, i.e., ap@p =: l/c2, and 
combining with equation (l), the continuity equation reduces to 

Figure 1 .  Co-ordinate system for the pipe flow 
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Momentum equation 

For axisymmetric flow the Navier-Stokes equation in the x direction is 

au au  au 
at ax ar -+u-+v-= 

v a au av + - -( - + - + 
3ax  ax ar -) ’ (3) 

where g is the acceleration due to gravity, z is the elevation of pipe at any x and v is the kinematic 
viscosity. 

Since it is assumed that u >> v, the momentum equation for axisymmetric flow in the r direction 
need not be considered. 

Governing equations 

The transient flow in a pipeline is unsteady. Therefore the instantaneous values of p ,  u and v 
in equations (2) and (3) may be considered as sums of a short-time average value and a fluctuating 
component: 

(4) v = u + vf, 

where the overbar denotes the short-time average value and the prime denotes the fluctuating 
component. 

Substituting equation (4) into equations (2) and (3), and using a simplification proposed by 
Brown6 and applying the assumption u >> v, the two-dimensional governing equations reduce 
to the form 

P = P + P‘, u = ii + u’, 

where u‘v’ is the Reynolds stress. 

equation (6) modifies it to 
The Reynolds stress z= ~ a u / a r ,  where E is the eddy viscosity, when substituted into 

aii aii 1 a p  aZ (; ;>, a2ii - + u  -=---- g-+ -+- -+v’-, 
at ax p a x  ax dr B Y 2  

(7) 

where vf = v + E.  

The accurate solution of equation (7) depends on the correct modelling of the distribution of 
v’ across the pipe. Ohmi and Usui’ have shown that the distribution of v‘ for flow in a pipe 
can be represented by a four-region model across the cross-section of the pipe. 

Distribution model of eddy viscosity 

of pipeline into four regions. The eddy viscosity in each region is defined as 
The four-region model describes the eddy viscosity distribution by dividing the cross-section 
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VI u*Y 
- = k-  + m = kY* + m, 
V V 

where k,  r* and m are given below: 

Region r* k m 

I 0-5 0 1 
I1 5-30 0.2 0 
111 30-0175 R* 0.4 0 
IV 0.175*- R* 0 0 0 7  R * 

where 

R* = u*R/v, U* = , / ( ~ / p ) ,  z = - pv‘(au/dr),, r* = U* Y/v, Y= R - r. 

Ohmi and Usui’ have shown that the above four-region model agrees well with the eddy viscosity 
model of Taylor, Prandti and Von Karman. They have also shown that the computed results with 
the proposed four-region model agree well with the experimental data for pipe flow. 

Integration of two-dimensional equations 

The two-dimensional governing equations for continuity (equation (5)) and momentum 
(equation (7)) include three independent variables x, r and t. If the two equations are integrated 
over the cross-section, defining the wall shear stress z = - (v’p(du/ar)),, then the meain pressure P 
and the mean velocity U reduce to the one-dimensional equations as follows: 

ap ap au -+ u- +pc2-=0, ax ax at 

au l ap  au 2 aZ -+--+ u-+ -Z+g-=o .  
at p a x  ax RP ax 

(9) 

The mean pressure and the mean velocity at  a cross-section can be calculated from the above 
equations and the velocity profile from the momentum equation (7). 

Finite difference equations 

The method of solving equations (9) and (10) using the centre implicit finite difference technique 
has been outlined by the  author^.^ With this method the mean pressure P and the mean velocity U 
at any cross-section of a pipe can be determined during a pressure transient; Figure 2(a) shows the 
notation used in the time-spatial plane. The velocity profile at  any cross-section of a pipe can be 
determined from equation (7) using an appropriate numerical method. In this study the centre 
implicit method is selected; Figures 2(b) and 2(c) show the notation and the grid used in the 
radial-axial plane. The derivatives using Taylor’s first approximations are 

t + A t -  - - t + A t  

, ( 1  1) 

7 (12) 

au - - Gi.r U : , r + U i + l , r - u : + l , r  

at 2At 

au (2 - e ) ( u ; , y  - u : , ~  + e(u:+,yr - G : + ~ , , )  - - - 
ax 2Ax 
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Time -SDatial Plane Radial -Spatial Plane 

‘ t  r 
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Figure 2. Notation of two-dimensional grid system for the centre implicit method 

6 = (u:,,+ ii;+1,r)/2. (15) 
In equation (12) an artificial viscosity term 0 is introduced as a damping factor; the significance of 
this term has been evaluated and explained previously by the  author^.^ If equations (1 1)-(15) are 
substituted into equation (7), the finite difference equation becomes 

where 
(16) B u f + A f  + B  , j + A f + B  , j f + A f  = 

1 i ,r+ 1 2 i,r 3 i , r - l  B4, 

U i + l , r - ~ ; , , - ~ : + l , r  - f  + A f  1 ap a Z  
+--+g- 2At pax ax 

u[e(u::yr - U : + ~ , J  - (2 - e )u i , , ]  

B, = 

2 Ax + 

16b) 

16c) 

If the pipe cross-section is divided into M nodes in the r direction, then equation (16) can be applied 
to nodes 2 to M - 1. The other two equations are derived using the boundary conditions given 
below: 

at node M ,  r = R:U = 0, i.e., Ut,LAf = 0; (174 

(17b) 
au 
dr 

at node 1, r = 0: - = 0, i.e., G:,:At = 

The axial velocity U at any section i of the pipe can be determined at time step t + At by applying 
equations (16) and (17). The eddy viscosity terms av’/ar and v’ are computed using the four-region 
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[ Compute B1 to B4 Eq.16 1 1 
I 

I Input const. D, E, K, L, T, Po and U”] 

1 Establish initial conditions P?, Up, C? 1 

I I Compute G~ to G ~ ,  F, to F~ I 
0 1 Establish boundary values of Pi , UA 1 
1 

[ Assemble into AX=B (Ref. L )  ] 
t 1 Solve for P~,u!  I 

[ i = N  1 
1 

Compute u!,~ from boundary condition 
t 

I i - i  - 1  I 

I 

I 
I I 

I 
I 

_ _ _ _ _ _ _ _ - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _  2 

Figure 3. Flow chart for computation procedure 

distribution model given in equation (8). In the above equations the axial velocity at section i + 1, 
i.e., iiizt:r, is required for determining the velocity profile at section i in the x direction. Therefore 
the velocity profile at section i + 1 should be computed before the computation of the velocity 
profile at section i. 

A computer program was written in Fortan IV to solve the two-dimensional governing 
equations of pressure transients in pipelines using the centre implicit method (CIM). The computer 
program was run on a mainframe computer IBM 3081G at the National University of Singapore. 
The flow chart, Figure 3, shows the solution procedure used in the computation. The CIM solution 
procedure and the conditions for solving equations (9) and (lo), which represent the one- 
dimensional analysis of pressure transients, have been presented previously by the  author^.^ The 
summary of the solution procedure for the two-dimensional governing equations is as follows: 

(1) Initial conditions are assumed to be that of the steady state. 
(2) Using equations (9) and (lo), compute the mean pressure and mean velocity at the next time 

step, where the wall shear of the last time step is used. 
(3) Compute the velocity profile by using equations (16) and (17) for i = 1 to i =: N .  
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(4) Compute the wall shear from the gradient of the velocity profile just computed at r = R.  
(5) Based on the computed values of P, U and z compute the solution for the next time step; and 

then the procedure is repeated. 

EXPERIMENTAL DATA AND COMPUTATIONAL PARAMETERS 

To evaluate the above numerical technique for determination of pressure transients at different 
Reynolds numbers, the experimental results presented by Streeter and Lai' and Holmboe and 
Rouleau7 are considered. In both cases the experimental results have been obtained for horizontal 
pipes of uniform cross-section with a valve at the end of the pipeline. The valve is closed 
instantaneously to create the pressure transient in the pipeline. In addition the pressure transient in 
a vertical pipeline is experimentally determined in the laboratory; details of this are given by Tan.* 
The schematic layout of the experimental test rig is shown in Figure 4. For the single-phase liquid 
pressure transient tests the valve between the air reservoir and the air-water injector remains 
closed. 

In the theoretical computation of pressure transients in pipelines, the values established for 
stability, damping ratio, etc. by the authors are used. The properties of fluid and pipe used by 
different researchers in their experimental investigation are given in Table I. For all three cases the 
number of nodes in the x direction (31), the number of nodes in the I direction (20), the stability 
criterion (At = Ax/c) and the damping ratio (0 = 1.005) are the same. Other parameters for the three 
different cases are as follows: 

Case 1 Case 2 Case 3 
(Ref. 1) (Ref. 7) (Ref. 8) 

Spatial increment ratio x / L  0.1 0- 1 0.033 
Radial increment ratio r / D  0.026 0.026 0.026 

DISCUSSION OF RESULTS 

The one-dimensional analysis4 of pressure transients agrees well with the experimental results at 
high Reynolds number. But at low Reynolds number, where the wall shear stress is significant, 

Valve # 1 

Pressure transducer 

Pressure transducer 

Figure 4. Schematic diagram of the experimental test facility 
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Table 1. Fluid properties and pipe configuration data 

Case 1 Case 2 Case 3 
(Ref. 1) (Ref. 7) (Ref. 8) 

Fluid Water Oil Water 
Viscosity (IO-6m2 s-') 0.959 39.75 1.007 
Density (kgm-3) 998.9 864.1 lo00 
Reservoir head (m) 13.72 - 9.58 
Pipe length (m) 91.44 36.09 2.0 
Pipe diameter (mm) 1 1.07 25.4 47.5 
Mean velocity (m s -  ') 0.112 0.128 0.0065 
Reynolds number 1340 82 307 

Per s p e x Pipe material Copper Copper 
Wave speed (m s- ') 1318.5 1324.3 594.5 

30 
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TIME (5) 

Figure 5. Comparison of experimental' and theoretical results at  Re = 1340 

there is a phase shift between the theoretical and experimental results. It is proposed that pressure 
transients at  low Reynolds number should be approached using a two-dimensional CIM model. 
To verify the proposed method for pressure transients in pipe flow, the experimental data 
published by other investigators are used in the first instance. Figure 5 shows a comparison 
between the experimental results' and the theoretical results obtained with the method of 
characteristics and the proposed two-dimensional model for the pressure transient at the valve due 
to sudden closure. The good agreement between the experimental results and the proposed 
two-dimensional model shows that the proposed model represents the actual flow characteristics 
and the wall shear stress better. The centre implicit method is more easily adaptable for two- 
dimensional flow than is the method of characteristics; furthermore, a computer program can be 
readily written when the CIM is used. 

Figure 6 shows the theoretical results obtained with the proposed model and the experimental 
results' at the centre of a pipeline embedded in concrete; again the pressure transient is created by 
the sudden closure of a valve. In the same figure the theoretical results obtained using the centre 
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Figure 7. Comparison of experimental' and theoretical results at Re = 307 

implicit method for the one-dimensional model are superimposed to illustrate the discrepancy 
between the one-dimensional and two-dimensional models. The proposed two-dimensional model 
gives theoretical values which agree very closely with the experimental results. The discre- 
pancy between the experimental results and the theoretical results obtained using both the 
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one-dimensional centre implicit method and the method of characteristics at low Reynolds 
number has been highlighted. 

Another comparison is made between the theoretical results of the two-dimensional model and 
the experimental results of the authors determined at low wave speed and with pipe of a different 
material. In the configuration a piezoelectric pressure transducer was used at each end of a 2 m 
length vertical Perspex pipe and the pressure transient was created by closing the solenoid valve at 
the downstream side of the upper transducer. The short length of test section was justifiable owing 
to the fact that high-speed data acquisition equipment was used. The head in the reservoir was 
maintained by supplying compressed air. Figure 7 shows the experimental and theoretical results 
at the upper pressure transducer (Pl) but only the experimental results at the lower pressure 
transducer (P2). In the theoretical calculation the pressure at the lower transducer was assumed to 
be constant, but this pressure varies slightly as seen in the figure and this has introduced pressure 
fluctuations at the upper transducer too. Apart from the second-order fluctuations, the amplitude 
and frequency of the theoretical and experimental values agree well when the pressure transient 
occurs as a result of the sudden closure of a valve. 

CONCLUSIONS 

The prediction of pressure transients using the proposed two-dimensional model and the use of the 
CIM for solving give results which agree well with the experimental results. The proposed method 
is applicable for axisymmetric flow and over a range of low Reynold numbers and a range of wave 
speed. Although the computation is performed implicitly, it is necessary to use the stability 
criterion At = Ax/c  and the value of damping ratio 0 = 1.005 which have been established earlier by 
the  author^.^,^ 

The two-dimensional CIM has been shown to give accurate predictions for pressure transients 
caused by sudden closure of a valve in a simple pipe configuration. The practical importance of this 
method can be enhanced if the method is extended to a pipe network type of configuration. 

LIST OF SYMBOLS 

coefficients 
celerity, acoustic velocity, sonic velocity 
coefficients 
coefficients 
acceleration due to gravity 
pressure head in height of water column 
any node in the n direction 
coefficient in eddy viscosity model 
length of the pipe 
number of grids in the r direction 
coefficient in eddy viscosity model 
number of nodes in the x direction 
mean pressure at any cross-section 
short-time average of p 
fluctuating component of p 
radius of pipe 
radial co-ordinate 
time 
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axial velocity at r 
short-time average of u 
fluctuating component of u 
mean velocity at any cross-section 
friction velocity = J(z/p) 
radial velocity at r 
short-time average of u 
fluctuating component of u 
longitudinal co-ordinate ( + ve to the initial flow direction) 
= R - r  
elevation 
radial increment 
time increment 
linear distance increment 
eddy viscosity 
artificial viscosity 
viscosity 
kinematic viscosity 
total viscosity = E + v 
density of the liquid 
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REFERENCES 

I. V. L. Streeter and C. Lai, ‘Waterhammer analysis including fluid friction’, Proc. ASCE,  HY2 ,  88, 79-112 (1962). 
2. W. Zielke, ‘Frequency dependent friction in transient pipe flow’, J .  Basic Eng., 90, 109-115 (1968). 
3. M. Ohmi, S. Kyomen and T. Usui, ‘Numerical analysis of a periodically varying flow in a circular tube containing a 

4. J. K. Tan, K. C .  Ng and G. K. Nathan, ‘Application of centre implicit method for investigation of pressure transients in 

5. M. Ohmi and T. Usui, ‘Pressure and velocity distributions in pulsating turbulent pipe flow’, Bull. J S M E ,  19 (129), 307- 

6. F. T. Brown, ‘The transient response of fluid lines’, J .  Basic Eng., 84, 547-553 (1962). 
7. E. L. Holmboe and W. T. Rouleau, ‘The effect of viscous shear on transients in liquid lines’, J .  Basic Eng., 89, 174-180 

8. J. K. Tan, ‘Study of pressure transient in pipelines’, M .  Eng. Thesis, National University of Singapore, 1986. 

slightly compressible flow’, Bull. JSME,  25 (206), 1266-1272 (1982). 

pipelines’, Int. j .  numer. methods fluids, I, 395-406 (1987). 

313 (1976). 

(1967). 




